用计算成像扩大卡塞格林系统视场的方法

郑汉青,崔庆丰*,胡洋,孙林,高旭东,郭玉 长春理工大学光电工程学院,吉林长春 130022

摘要 卡塞格林光学系统的结构严重限制了视场,通常需添加辅助光学元件来扩大视场,但将导致系统结构复杂, 不利于光学系统的小型化、轻量化。提出一种计算成像设计方法,首先优化系统结构参数,控制像差;然后构建系 统的点扩展函数模型;最后采用反卷积算法处理图像。所提方法仅利用主、次镜结构就扩大了卡塞格林系统的视 场。对 F 数为5.5,焦距为470 mm 的卡塞格林系统进行仿真实验,实验结果表明,在1.5°视场范围内,处理后图像 的轴外视场调制传递函数在 20 lp/mm 处提升了约 0.2,图像质量得到明显提升。 关键词 光学设计;计算成像;卡塞格林;点扩展函数;图像复原

中图分类号 O436 文献标志码 A

doi: 10.3788/AOS202040.1522001

Method for Expanding Field-of-View of Cassegrain System with Computational Imaging

Zheng Hanqing, Cui Qingfeng*, Hu Yang, Sun Lin, Gao Xudong, Guo Yu School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China

Abstract The structure of Cassegrain optical system severely limits its field of view (FOV). Generally, additional optical elements are needed to expand the FOV, but this approach leads to a complicated structure and does not facilitate a miniaturized and lightweight optical system. In this paper, a new method to expand the FOV of Cassegrain system using computational imaging was proposed. First, the structural parameters of the system were optimized to control the aberrations; then, a point spread function model was established; finally, a deconvolution algorithm was used to process the image. Eventually, the FOV of the Cassegrain system could be expanded using the structure that only comprised primary and secondary mirrors. A simulation experiment was conducted wherein a Cassegrain system with an F of 5.5 and 470-mm focal length was developed. The experimental result shows that in the FOV of 1.5°, the off-axis FOV modulation transfer function of the processed image is approximately improved by 0.2 at 20 lp/mm. Moreover, the quality of the image is significantly improved.

Key words optical design; computational imaging; Cassegrain; point spread function; image restoration OCIS codes 220.1000; 110.1758; 220.3620

1 引 言

卡塞格林光学系统是典型的反射式光学系统, 它具有无色差、结构紧凑、近轴视场内成像优良、透 过波段不受限制、易于实现无热化、主次镜易于加工 和检测等优点,因此,它主要被用于长焦距成像、远 距离探测领域。卡塞格林系统在轴上完善成像,但 该系统轴外像差严重,导致其视场很小。基于卡塞 格林系统,Ritchey 和 Chretien 提出了 R-C 光学系 统^[1],R-C 光学系统轴上并不是完善成像,但其轴上 弥散斑仍在艾里斑范围内。相比于经典卡塞格林光 学系统,R-C光学系统视场有所扩大,但从应用的角 度来看,其视场仍然很小^[2-4]。如果需要进一步扩大 卡塞格林光学系统的视场,就需要采用辅助光学元 件校正像差。

自 Cassegrain 提出卡塞格林光学系统之后^[1], 科研人员已经研究出多种扩大卡塞格林光学系统视 场的方法,这些方法可以分为前置校正法和后置校 正法两类。前置校正法中 Schmidt-Cassegrain 结构 应用较广,其前置校正板的口径太大,不利于加

收稿日期: 2020-03-17;修回日期: 2020-04-22;录用日期: 2020-05-06

基金项目:国家重大科技专项高分专项(51-H34D01-8358-13/16)

^{*} E-mail: qf_cui@163.com

工^[5-7]。后置校正法主要是在卡塞格林光学系统次 镜之后加入透镜来校正系统像差,Klevtsov等^[8-12] 采用后置校正的方式扩大了卡塞格林系统的视场。 上述方法在扩大视场的同时也带来了新的问题:系 统结构变得复杂;增加了无热化难度;限制了应用波 段;不利于实现系统小型化、轻量化。因此,需要一 种扩大卡塞格林系统视场的新方法。近几年来出现 的计算成像是一种间接成像,它重新定义了成像方 式。计算成像技术能够改善传统光学系统,例如:实 现传统摄像机全焦点成像、补偿卡塞格林系统中心 遮拦对成像造成的损失、提高简易光学系统的成像 质量、解决衍射元件衍射效率下降的问题^[13-18]。

本文提出一种结合图像复原的计算成像设计方法。首先,分析了卡塞格林光学系统的像差特性,结 合图像复原过程的需要对卡塞格林光学系统的结构 参数和像差进行调整和控制;然后,根据像差变化规 律,提出像差推算公式,推算出各像点的波前像差, 建立广义光瞳函数,利用傅里叶变换建立点扩展函 数(PSF)模型;最后,采用空间变化反卷积算法对图 像进行处理,实现扩大卡塞格林系统视场的目的。 利用所提方法设计了待处理的卡塞格林系统,并进 行仿真实验,结果表明,与未处理图像相比,处理图 像的轴外视场调制传递函数(MTF)值明显提升,图 像质量显著提高。

2 基本原理

光学系统的成像过程可以理解为一个卷积的过程,这个过程^[19-20]可表示为

 $g(x,y) = h(x,y) \otimes f(x,y) + \eta(x,y),$ (1) 式中:f(x,y)表示物;h(x,y)对应光学系统的 PSF; $\eta(x,y)$ 表示噪声;g(x,y)表示像; \otimes 表示卷 积运算。在噪声有限的情况下,若物和光学系统不 变,那么像也不会变化,即在同一个光学系统中,物 与像是一一对应的。由此可知,若已知像和 PSF,且 对噪声进行抑制,则可以得到物。

2.1 卡塞格林系统像差分析及设计方法

反射式光学系统没有色差,因此本研究只讨论 单色像差对成像的影响。当卡塞格林光学系统的 主、次镜曲率,遮拦比,次反射镜放大倍率确定时,系 统的场曲为定值,与其他像差相比,场曲对成像的影 响较小,对成像质量影响较大的像差主要是球差、彗 差和像散,由于系统自由度有限,这些像差不可能得 到全部校正,但球差属于轴上像差,是必须要被校正 的^[21]。当光学系统的孔径固定时,彗差与像高呈线 性关系;像散与像高的平方呈正比^[1]。随着像高的 变化, 彗差和像散对弥散斑的贡献与视场的变化关 系如图 1 所示。

图 1 彗差、像散对弥散斑的贡献量与视场的关系

Fig. 1 Relationship between contributions of coma and astigmatism to diffuse spot and field of view

从图 1 可以看出, W。与焦距和 F 数相关, 在 W。视场范围内, 经典卡塞格林系统的轴外像差主 要是彗差, 其次为像散, 因此像散的校正较为容易。 且从后期计算处理的角度来看, 受彗差影响的 PSF 模型的变化规律更易于分析, 模型构建难度小, 构建 精度高, 有利于降低振铃效应^[22], 提高后期图像复 原的效果和速度。综合上述两方面来看, 前端光学 系统的构建需要满足球差和像散的校正要求。因 此, 本研究提出一种评价函数, 即

 $q = \min(w_1 \times s_{spha} + w_2 \times a_{asti} + w_3 \times f_{feur})$, (2) 式中:q 为评价函数数值,q 较小代表此时的前端光 学系统满足校正要求; w_1, w_2, w_3 均为权重; $s_{spha}, a_{asti}, f_{feur}$ 分别为球差、像散、场曲对弥散斑的贡献 量。在卡塞格林光学系统的基础上,通过优化主、次 镜的圆锥系数,得到具有大彗差的前端光学系统,通 过后期反卷积运算消除彗差对成像的影响,以改善成像质量。

2.2 建立 PSF 模型的原理

本研究构建 PSF 模型的目的是获得带有能量 强度信息的弥散斑。可使用光线追迹的方法获取弥 散斑,但是光线追迹方法没有考虑孔径衍射的影响, 而实际成像过程中衍射对成像的影响很大,无法忽 略。为了更贴近实际成像过程,本研究利用波前像 差和广义光瞳函数来构建 PSF 模型。相比于光线 追迹法,所提方法不仅考虑了衍射对弥散斑的影响, 还加快了模型的构建速度。

卡塞格林光学系统的次镜遮挡了部分光线,这 就导致前端系统的光瞳是圆环,对应的光瞳函数 p(x,y)可表示为

 $p(x,y) = \begin{cases} 1, & x^2 + y^2 \leq \rho^2 \text{ and } x^2 + y^2 \geqslant (\alpha \rho)^2 \\ 0, & \text{otherwise} \end{cases}$ (3)

式中:x、y 表示光瞳坐标; ρ 表示光瞳半径; α 表示 遮拦比。

光瞳函数只能表征入射光束的形状,并不包含 光学系统像差。为了表征光学系统像差,引入广义 光瞳函数 *P*(*x*,*y*):

$$P(x,y) = p(x,y) \exp[ikW(x,y)], \quad (4)$$

式中:波数 $k = \frac{2\pi}{\lambda}$; W(x, y)表示实际波面偏离理想 球面的光程差,即波前像差。

光学系统的波前像差可以通过泽尼克多项式 Z; 的线性组合进行表示,即

$$W(x,y) = \sum_{i=1}^{\infty} a_i Z_i, \qquad (5)$$

式中:*a*;表示泽尼克项的系数;*i*表示多项式的级次。

泽尼克多项式与像差具有对应关系,*a*;的大小 直接反映像差的严重程度,泽尼克多项式的前9项 及对应像差如表1所示。

表 1 条纹泽尼克多项式的前 9 项

Table 1	First	nine	terms	of	fringe	Zernike	polynomial	
---------	-------	------	-------	----	--------	---------	------------	--

Term	Zernike polynomial	Name
Z_0^0	1	Piston
Z_1^1	$R\cos \theta$	X-tilt
Z_1^{-1}	$R\sin\theta$	<i>Y</i> -tilt
$Z_2^{_0}$	$2R^2 - 1$	Defocus
Z_2^2	$R^2\cos(2\theta)$	0° astigmatism
Z_2^{-2}	$R^2 \sin(2\theta)$	45° astigmatism
Z_3^1	$(3R^3-2R)\cos\theta$	X-coma
Z_{3}^{-1}	$(3R^3-2R)\sin\theta$	Y-coma
$Z_4^{_0}$	$6R^4 - 6R^2 + 1$	Sphere

根据 2.1 节的分析结果, 彗差对成像质量的影 响较大, 其他像差的影响很小。结合表 1, 系统 Y 方 向的波前像差 W_Y(x, y)可以近似表示为

 $W_Y(x,y) \approx b \cdot Z_1^{-1} + c \cdot Z_3^{-1}$, (6) 式中:b 表示 Y 方向倾斜泽尼克项的系数;c 表示 Y 方向彗差泽尼克项的系数。

为了得到连续性波前像差,在光学系统像面Y方向上进行等间距采样,由于倾斜量、彗差与像高呈正

比,因此 Z₁⁻¹、Z₃⁻¹ 泽尼克项的系数与像高的关系为

$$\begin{cases} b = \frac{b_{j+1} - b_j}{h_{j+1} - h_j} \cdot (h - h_j) + b_j \\ c = \frac{c_{j+1} - c_j}{h_{j+1} - h_j} \cdot (h - h_j) + c_j \end{cases},$$
(7)

式中:h 表示推算点的像高; h_j 表示第j 个采样点 的像高;h 的大小介于 h_j 和 h_{j+1} 之间; b_j 表示第j个采样点波前像差中 Z_1^{-1} 项的系数; c_j 表示第j 个 采样点波前像差中 Z_3^{-1} 项的系数。

根据(6)式和(7)式可得到 Y 方向的波前像差 推算公式为

$$W_{Y,S}(x,y) = \left[\frac{b_{j+1} - b_j}{h_{j+1} - h_j} \cdot (h - h_j) + b_j\right] \cdot Z_1^{-1} + \left[\frac{c_{j+1} - c_j}{h_{j+1} - h_j} \cdot (h - h_j) + c_j\right] \cdot Z_3^{-1}, \quad (8)$$

式中:S 表示 Y 方向的推算点;W_{Y,S}(x,y)表示 Y 方向推算点的波前像差。

由于前端系统是共轴对称式系统,将Y方向波 前像差进行旋转即可得到全视场内任意一点的波前 像差 W_l(x,y),即

 $W_l(x,y) = \text{Rotate}\{W_{Y,s}(x,y),\theta\},$ (9) 式中:*l* 表示视场内任意一点; θ 表示 *l* 点到像面中 心的连线与 Y 轴的夹角;Rotate(•)表示旋转操作; $W_l(x,y)$ 表示 *l* 点处的波前像差。

通过(9)式可得到各视场的波前像差,再将(9) 式代入(4)式,可得到各个视场的广义光瞳函数。本 研究的光学系统属于非相干型,对广义光瞳函数作 傅里叶变换,变换结果实部的平方是 PSF 函数,可 表示为

$$f_{\rm PSF}(x,y) = \mid \mathscr{F}\{P(x,y)\} \mid^2, \qquad (10)$$

式中: *F*表示傅里叶变换。由于该光学系统各视场的 PSF 具有关于光轴中心对称的特性,可只计算线 视场的 PSF, 然后通过旋转得到全视场的 PSF, 这种 方法减轻了求取 PSF 的工作量, 提高了模型的构建 速度, 降低了模型的存储量。

对前端系统进行采样拟合得到系数 b_j 、 c_j ,结合上述过程,可得各视场的PSF,从而建立PSF模型。

2.3 空间变化反卷积算法

解卷积算法起初是忽略模糊核随空间变化的特性,对整个图像采用同一个模糊核进行反卷积复原, 它在模糊核变化小的情况下具有一定的准确性,这 种方法称为空间不变反卷积算法。对于模糊核随空 间变化较大的系统来说,必须采用空间变化反卷积 算法,为此本研究采用了 Sroubek 等^[23]提出的空间 变化反卷积理论。

该理论将模糊核按奇异值分解为基滤波矩阵 $B = [B_1, B_2, \dots, B_k]$ 和系数矩阵 $M = [M_1, M_2, \dots, M_k]^T$,即

$$f_{\rm PSF} = \begin{bmatrix} \boldsymbol{B}_1 , \boldsymbol{B}_2 , \cdots , \boldsymbol{B}_k \end{bmatrix} \begin{vmatrix} \boldsymbol{M}_1 \\ \boldsymbol{M}_2 \\ \vdots \\ \boldsymbol{M}_k \end{vmatrix}, \qquad (11)$$

式中:k 表示将奇异值从大到小排列后取前 k 个奇 异值。k 值越大,表示复原效果越好,复原速度越 慢。将(11)式代入(1)式,可得

$$\boldsymbol{g} = \begin{bmatrix} \boldsymbol{B}_1, \boldsymbol{B}_2, \cdots, \boldsymbol{B}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{M}_1 \\ \boldsymbol{M}_2 \\ \vdots \\ \boldsymbol{M}_k \end{bmatrix} * \boldsymbol{f} + \boldsymbol{\eta} \,. \tag{12}$$

为求解(12)式,采用正则化思想求最优解,其最 优评价标准可以表示为

 $u = \min\{ \| f_{PSF} * \hat{f} - g \|_{2}^{2} + \gamma \| \nabla^{2} \hat{f} \|_{p} \},$ (13) 式中:u 为评价标准的数值,u 越小求解结果越好; $\| f_{PSF} * \hat{f} - g \|_{2}^{2}$ 为保真项; $\| \nabla^{2} \hat{f} \|_{p}$ 为平滑约束 项,用于抑制噪声和振铃效应^[22]; \hat{f} 表示物的近似 解;g 为探测器接收的图像; γ 为平滑约束项的权 重; ∇^{2} 为拉普拉斯算子;p 对应不同的范数类型。 采用乘子交替方向法(ADMM)^[24]求取(13)式的最 优解 \hat{f} ,完成图像复原。

综上所述,所提出的计算成像联合设计方法的 步骤如下:首先设计光学系统,以经典卡塞格林系统 为初始结构,以(2)式为优化评价标准,优化主、次镜 的圆锥系数,得到 PSF 按一定规律变化的前端光学 系统;然后,建立 PSF 模型,对上一步设计的前端光 学系统进行采样,并用泽尼克多项式拟合各采样点 的波前像差,得到拟合系数 b_j、c_j,将 b_j、c_j结合本 文提出的(6)~(9)式推算波前像差,并构建广义光 瞳函数,利用傅里叶变换得到 PSF 模型;最后,进行 算法复原及结果评价,利用 Sroubek 等^[23]提出的理 论,对上一步建立的 PSF 模型按奇异值进行分解, 得到基滤波矩阵 B 和系数矩阵 M,结合探测器接收 的模糊图像 g,并将其代入(13)式,并采用 ADMM

迭代算法求取最优解,得到图像的复原结果 \hat{f} 并进 行评价,根据评价结果调整反卷积算法中的参数,经 过多次调整,输出最终复原结果。所提方法的流程 如图 2 所示。

3 设计实例及结果分析

3.1 光学系统设计

基于经典卡塞格林系统,采用所提出的计算成 像设计方法,针对分辨率为 640 pixel×512 pixel、像 元尺寸为 15 μm 的 NSC1201-SI 型探测器,设计的 光学系统指标如表 2 所示。

图 2 所提方法的流程图 Fig. 2 Flow chart of proposed method

表 2 系统指标

Table 2 Design specifica	tions of system
Parameter	Content
Focal length /mm	470
<i>F</i> -number	5.5
Wavelength /nm	900-1700
Field of view /(°)	1.5

设计过程中,将主、次镜的圆锥系数设为变量, 经过迭代优化,使 2.1 节中(2)式的评价函数达到最 小值,最终在主、次镜都是双曲面的情况下满足 2.1 节的设计要求。该光学系统的结构如图 3 所示。

图 3 所设计光学系统的结构 Fig. 3 Layout of designed optical system

3.2 建立 PSF 模型

采用泽尼克多项式对前端光学系统 Y 方向视场的波前像差进行拟合,得到的 Z_1^{-1} 项、 Z_3^{-1} 项的 拟合系数 b_j 、 c_j 见表 3。

表 3 中 Z_1^{-1} 项对应 Y 倾斜,此项表征视场变化

给波前像差带来的影响, Z_3^{-1} 项对应 Y 方向彗差, 二者的系数与像高呈线性关系,证明了 2.1 节所述 理论的正确性。

表 3 采样点拟合系数

Table 3 Fitting coefficients for sampling points

j	Y field	b_j	С ј
1	0	0.0084	0.0034
2	0.039	0.2283	0.0986
3	0.094	0.5532	0.2635
4	0.188	1.1232	0.5525
5	0.281	1.6602	0.8045
6	0.375	2.2199	1.0885
7	0.469	2.7548	1.3410
8	0.563	3.2861	1.6002
9	0.656	3.8326	1.8374
10	0.750	4.3808	2.1167

针对此光学系统,按照 2.2 节介绍的方法建立 数学模型,抽取 0°、0.38°、0.53°、0.75°视场,利用 Zemax 软件模拟得到的波前像差和所设计模型的 波前像差的对比如图 4 所示,可以看出,二者相差极 小。弥散斑对比如图 5 所示,其中利用 Zemax 软件 得到的各视场弥散斑是通过光线追迹方法得出的, 而模型的弥散斑包含了衍射的影响信息。从图 5 可 以看到,轴外弥散斑的分布呈彗星形状,表明影响轴 外视场成像质量的主要像差是彗差,这与设计预想 一致。

图 4 不同视场的波前像差对比结果。(a)(b) 0°;(c)(d) 0.38°;(e)(f) 0.53°;(g)(h) 0.75° Fig. 4 Wavefront aberration at each field of view. (a)(b) 0°; (c)(d) 0.38°; (e)(f) 0.53°; (g)(h) 0.75°

当视场为 0.75°时, Zemax 的快速傅里叶变换 PSF 和所提模型的 PSF 的对比结果如图 6 所示,这 两种模型均考虑了次镜遮挡对 PSF 的影响。可以 看出:PSF分布呈彗差形状,大部分能量集中在主

图 5 不同视场的弥散斑对比结果。(a)(b) 0°;(c)(d) 0.38°;(e)(f) 0.53°;(g)(h) 0.75° Fig. 5 Diffuse spot at each field of view. (a)(b) 0°; (c)(d) 0.38°; (e)(f) 0.53°; (g)(h) 0.75°

光线附近;与主光线的距离越大,能量占比越小。

3.3 复原结果及分析

根据所建立的 PSF 模型,采用 2.3 节介绍的空间变化反卷积算法对模糊图像进行复原。本文方法的成像模式属于间接成像,不能以未处理图像的评价为结果,为了评价复原图像的质量,分别从主观和客观两方面进行评价。1)主观评价:用人眼观察复原前、后的图像,观察其边界部分及高频区的变化,并进行初步对比,结果如图 7 和图 8 所示。2)客观评价:采用斜边法^[1,25-26]测量复原前、后图像的MTF,其对比结果如图 9 和表 4 所示。

从图 7 可以看出:成像模拟图中从图片中心向 外越来越模糊,细节部分辨识度很低,整体成像质量 较差,图片边缘的窗户轮廓受彗差影响已经变得模 糊不清;与成像模拟图相比,复原图整体更为清晰、 轮廓分明,细节部分的辨识度提高,图片边缘部分受 彗差的影响变小,窗户轮廓变得分明,图像质量明显 提升。但复原图边缘部分的复原效果较中心视场仍 有一定差距,主要是因为随着视场的增大,误差对复 原效果的影响会更明显,从而导致边缘部分复原效 果下降。

图 8 所示为 ISO12233 型分辨率板部分区域的 模拟测试结果。与模拟成像相比,复原后分辨率板 的边界更加锐利、分明。图 8(c)中"9"受彗差影响 较大,边界模糊;而图 8(d)中"9"的边界受彗差影响 减弱,边界变得分明。图 8(e)中线条模糊,不易分 辨;经过处理后,图 8(f)的线条清晰,容易分辨。

为了客观地评价成像质量,选取图 8 中的 6 个 区域测量 MTF,各区域的 MTF 如图 9 所示。

从图 9 可以看到,复原前、后区域 1 轴上成像质 量一直很高,这表明所提出的计算成像设计方法并 没有以牺牲轴上成像清晰度为代价来达到扩大视场

图 7 模拟成像复原前、后结果对比。(a)(c)成像模拟图及其局部放大图; (b)(d)复原图及其局部放大图

Fig. 7 Comparison of results before and after simulated imaging restoration. (a)(c) Simulated image and its partial enlarged view; (b)(d) restoration image and its partial enlarged view

图 8 分辨率板成像复原前、后结果对比。(a)(c)(e)分辨率板模拟成像及其局部放大图;(b)(d)(f)复原图及其局部放大图 Fig. 8 Comparison of results before and after imaging restoration of resolution plate. (a)(c)(e) Simulation image of resolution plate and its partial enlarged views; (b)(d)(f) restoration image and its partial enlarged views

的目的。区域2和区域6的 MTF 提升非常明显, 图像质量提升最大。区域3~5的 MTF 提升较为 明显,图像质量提升较大。

由图 9 可知,处理后图像的 MTF 得到显著提高,表明所提出的计算成像设计方法能够有效提高 大视场卡塞格林光学系统的成像质量。

图 9 图 8 中各区域复原前、后的 MTF 对比。(a)复原前各区域的 MTF;(b)复原后各区域的 MTF

Fig. 9 MTF comparison of each region in Fig. 8 before and after restoration. (a) MTF of each region before restoration; (b) MTF of each region after restoration

4 结 论

针对卡塞格林光学系统,基于波前像差理论和 泽尼克多项式,给出了彗差推算公式,并提出一种联 合图像复原的计算成像设计方法,用以扩大卡塞格 林系统的视场。与采用辅助光学元件扩大视场的方 法相比,所提方法只有主镜和次镜,因此,该系统无 色差,结构紧凑,工作波段不受限制,易于实现无热 化,实现了系统的小型化、轻量化。运用所提方法对 卡塞格林光学系统进行仿真实验,将复原前、后图像 进行对比,复原后图像轮廓清晰分明,整体成像质量 提高,在 20 lp/mm 处各轴外视场 MTF 平均提高了 约 0.2。结果表明,所提出的联合设计方法使卡塞 格林光学系统在 1.5°视场范围内的图像质量得到 明显提升,实现了扩大卡塞格林光学系统视场的 目的。

参考文献

- [1] Smith W J. Modern optical engineering [M]. 4th ed. New York: McGraw Hill, 2008: 472-512, 89-90, 385-400.
- [2] Yuan Y H. The research for small-sized reflecting/ catadioptric telescope [D]. Suzhou: Soochow University, 2011.
 袁颖华.小型反射/折反射式望远镜的研究[D].苏州:苏州大学, 2011.
- [3] Pan J H. New pan-Cassegrain telescope system [J]. Optics and Precision Engineering, 2003, 11(5): 438-441.
 潘君骅. 一个新的泛卡塞格林望远镜系统[J]. 光学 精密工程, 2003, 11(5): 438-441.
- [4] Malacara D, Malacara Z. Handbook of optical design
 [M]. 3rd ed. New York: Marcel Dekker, 2004: 364-382.
- [5] Devany A S. Schmidt-Cassegrain telescope system

with a flat field [J]. Applied Optics, 1965, 4(10): 1353-1353.

- [6] Fischer R E, Tadic-Galeb B. Optical system design [M]. 2nd ed. New York: McGraw Hill, 2008: 138-142.
- [7] Brychikhin M N, Chkhalo N I, Eikhorn Y O, et al. Reflective Schmidt-Cassegrain system for largeaperture telescopes [J]. Applied Optics, 2016, 55 (16): 4430-4435.
- [8] Klevtsov Y A. Prospects for developing Cassegrain telescopes with a corrector in convergent beams [J]. Journal of Optical Technology, 2004, 71(10): 659-665.
- [9] Rosin S. Corrected Cassegrain system [J]. Applied Optics, 1964, 3(1): 151-152.
- [10] Wilson R N. Corrector systems for Cassegrain telescopes [J]. Applied Optics, 1968, 7(2): 253-263.
- [11] Harmer C F W, Wynne C G. A simple wide-field Cassegrain telescope [J]. Monthly Notices of the Royal Astronomical Society, 1976, 177(1): 25-30.
- [12] Shi G H. Optical design of Cassagrain system with three aspherical surfaces [J]. Acta Optica Sinica, 1998, 18(2): 238-241.
 史光辉. 含有三个非球面的卡塞格林系统光学设计 [J]. 光学学报, 1998, 18(2): 238-241.
- [13] Watnik A T, Harvey A R, Lam E Y, et al. Computational optical sensing and imaging: introduction [J]. Applied Optics, 2019, 58 (7): COS1-COS2.
- [14] Levin A, Fergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture[J]. ACM Transactions on Graphics, 2007, 26(3): 70.
- [15] Xie D J, Li T C, Feng H J, et al. Image restoration of Cassegrain optical remote sensing system[J]. Acta Optica Sinica, 2011, 31(6): 0611004.
 谢丁杰,李铁成,冯华君,等.卡塞格林光学遥感系

统的图像复原[J]. 光学学报, 2011, 31(6): 0611004.

- [16] Peng Y F, Fu Q, Amata H, et al. Computational imaging using lightweight diffractive-refractive optics
 [J]. Optics Express, 2015, 23(24): 31393-31407.
- [17] Hu Y, Cui Q F, Zhao L D, et al. PSF model for diffractive optical elements with improved imaging performance in dual-waveband infrared systems [J]. Optics Express, 2018, 26(21): 26845-26857.
- [18] Zuo C, Feng S J, Zhang X Y, et al. Deep learning based computational imaging: status, challenges, and future [J]. Acta Optica Sinica, 2020, 40 (1): 0111003.
 左超,冯世杰,张翔宇,等.深度学习下的计算成像:现状、挑战与未来[J].光学学报, 2020, 40(1): 0111003.
- [19] Gonzalez R C, Woods R E. Digital image processing [M]. 3rd ed. Upper Saddle River: Prentice Hall, 2008: 196-198.

[20] Wu Q, Gao K, Zhang Z Z, et al. Reconstruction of variable exponential regularization for wide-field polarization-modulated imaging [J]. Acta Optica Sinica, 2020, 40(1): 0111025.
吴穹,高昆,张震洲,等. 宽视场偏振调制成像的变 指数正则化重构方法[J]. 光学学报, 2020, 40(1): 0111025.

[21] Wetherell W B, Rimmer M P. General analysis of aplanatic Cassegrain, Gregorian, and Schwarzschild

telescopes[J]. Applied Optics, 1972, 11(12): 2817-2832.

- [22] Wang H D. Research on restoration method of motion blurred image based on ringing suppression
 [D]. Nanjing: Nanjing University of Science and Technology, 2011.
 王辉登.基于振铃抑制的运动模糊图像复原方法研究[D].南京:南京理工大学, 2011.
- [23] Sroubek F, Kamenicky J, Lu Y M. Decomposition of space-variant blur in image deconvolution [J]. IEEE Signal Processing Letters, 2016, 23(3): 346-350.
- [24] Mueller M, Lehmann M, Braun A. Optical quality metrics for image restoration [J]. Proceedings of SPIE, 2019, 11062: 1106214.
- [25] Li T C, Tao X P, Feng H J, et al. Modulation transfer function calculation and image restoration based on slanted-edge method [J]. Acta Optica Sinica, 2010, 30(10): 2891-2897.
 李铁成,陶小平,冯华君,等.基于倾斜刃边法的调 制传递函数计算及图像复原[J].光学学报, 2010, 30(10): 2891-2897.
- [26] LiTC, Feng HJ, XuZH, et al. New analytical line spread function fitting model for modulation transfer function calculation[J]. Acta Optica Sinica, 2010, 30(12): 3454-3459.
 李铁成,冯华君,徐之海,等.一种可用于调制传递 函数计算的新型线扩展函数拟合模型[J].光学学 报, 2010, 30(12): 3454-3459.